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ABSTRACT
Sequential recommendation (SR) aims to predict the subsequent
behaviors of users by understanding their successive historical be-
haviors. Recently, some methods for SR are devoted to alleviat-
ing the data sparsity problem (i.e., limited supervised signals for
training), which take account of contrastive learning to incorporate
self-supervised signals into SR. Despite their achievements, it is
far from enough to learn informative user/item embeddings due to
the inadequacy modeling of complex collaborative information and
co-action information, such as user-item relation, user-user relation,
and item-item relation. In this paper, we study the problem of SR
and propose a novel multi-level contrastive learning framework for
sequential recommendation, named MCLSR. Different from the
previous contrastive learning-based methods for SR, MCLSR learns
the representations of users and items through a cross-view con-
trastive learning paradigm from four specific views at two different
levels (i.e., interest- and feature-level). Specifically, the interest-level
contrastive mechanism jointly learns the collaborative information
with the sequential transition patterns, and the feature-level con-
trastive mechanism re-observes the relation between users and items
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via capturing the co-action information (i.e., co-occurrence). Exten-
sive experiments on four real-world datasets show that the proposed
MCLSR outperforms the state-of-the-art methods consistently.
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1 INTRODUCTION
Recommendation systems play critical roles in many online ser-
vices such as E-commerce, video streaming, and music platform
due to their success in alleviating the information overload prob-
lem. Among these applications, sequential recommendation (SR)
pays attention to the chronological order of users’ behaviors and has
become a paradigmatic task in recent years. Given a user behavior
history, SR captures the sequential transition patterns among succes-
sive items and predicts the next item that the user might be interested
in, consistent with many real-world recommendation situations.

The study of the sequential recommendation system is of signifi-
cant importance and thus has received considerable research interest
in recent years. For instance, there exist several works to treat SR
as a sequence modeling task, such as GRU4Rec [12], which adopts
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(a) Traditional SR methods

(b) Existing CL-based methods for SR (c) Ours
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Figure 1: Illustration of training mechanisms of different meth-
ods for SR. (a) Traditional methods for SR where the super-
vised signals are entirely based on the observed user behaviors.
(b) Recently contrastive learning-based methods for SR learn
the self-supervised signals from the sequence itself. (c) Our pro-
posed method learns rich self-supervised signals by performing
cross-view contrastive learning on sequence information, user-
item, user-user, and item-item relations.

recurrent neural networks (RNNs) to model the sequential behaviors
of users. Then, SASRec [15] uses the self-attention mechanism to
capture high-order dynamics from user behavior sequences. Fur-
ther, graph-based methods [3, 27, 35] convert each sequence into
a graph and model the complex item transitions via graph neural
networks (GNNs). However, most of these methods are under a
supervised learning paradigm and may suffer from the data sparsity
problem since their supervision signal is entirely from the observed
user behaviors (shown in Fig 1a), which are highly sparse compared
to the entire interaction space [37].

Recently, self-supervised learning (SSL) [19] is proposed to mine
the supervised signals from the data itself, which shows promising
potential to alleviate the data sparsity problem. As a typical self-
supervised learning technique, contrastive learning (CL) has gained
increasing attention. By extracting the positive and negative samples
from the data, contrastive learning aims to maximize the agreement
of positive pairs while minimizing the agreement between nega-
tive samples. In this way, it can learn discriminative embeddings
without explicit extra labels [34]. Based on the principle of con-
trastive learning, existing CL-based SR methods apply data-level
augmentation (S3-Rec [52] and CL4SRec [41]) or model-level aug-
mentation (DuoRec [26]) on user behavior sequence to generate
postive and negative pairs, and learn the extra self-supervised signals
by contrasting the corresponding pairs.

Despite such achievement, the above methods obtain the self-
supervised signals entirely from the sequence itself (shown in Fig
1b), which is insufficient for SR for two reasons. First, since each
behavior sequence contains a limited number of items, the self-
supervised information obtained from the sequence is inadequate.
Second, S3-Rec and CL4SRec generate contrastive pairs by perform-
ing simply data augmentation (e.g., item cropping and masking)
on behavior sequences, resulting in less information diversity of
contrastive pairs, thus the obtained self-supervised signals would

be too weak to learn informative embedding [34]. Due to the in-
sufficiency of directly exploiting contrastive learning on sequential
views (i.e. user behavior sequences), it motivates us to explore more
views and generate more informative pairs for contrastive learning.
However, it is non-trivial to define an appropriate contrastive learn-
ing framework with more contrasting views for SR, which requires
us to address the following fundamental issues: (1) How to select
proper views for contrastive learning: As mentioned above, more
views are desired for the contrastive learning of SR. An essential
requirement is that the selected views should be informative and can
reflect user preferences. In fact, collaborative information [33] (e.g.,
user-item relation) and co-action information [9] (e.g., user-user
relation and item-item relation) are two significant factors for user
preference learning, which show strong potential to help obtain rich
self-supervised signals and should be carefully considered. (2) How
to set a proper contrastive task: Proper design of contrastive tasks is
critical for contrastive learning [34]. In general, similar contrastive
views would make the self-supervised signals too weak to learn
informative embeddings. Therefore, it is important to ensure a clear
diversity of information between the contrasting views.

In light of the aforementioned limitations and challenges, in this
paper, we propose a multi-level contrastive learning framework for
sequential recommendation (MCLSR). To effectively learn the self-
supervised signals, except for the sequential view, we construct
three graph views and adopt a multi-level cross-view contrastive
mechanism to learn collaborative information, co-action informa-
tion and sequential transitions (shown in Fig 1c). Specifically, four
views of SR are given firstly, i.e., sequential view, user-item view,
user-user view, and item-item view. Then MCLSR performs a cross-
view contrastive learning paradigm on two levels (i.e.,, interest- and
feature-level). At the interest-level, MCLSR obtains the sequential
transition patterns from the sequential view and the collaborative
information from the user-item view, where the contrastive mech-
anism is performed to capture the complementary information be-
tween the two views. At the feature-level, MCLSR re-observed the
relation between users and items via performing GNNs on the user-
user view and item-item view. By applying contrastive learning to
learn discriminative information on two views, MCLSR can capture
the self-supervised signals from the co-action information between
users (items) to further enhance representation learning.

To summarize, this work makes the following main contributions:

• We exploit contrastive learning with collaborative information
and co-action information to alleviate the data sparsity problem
in studying the sequential recommendation task. Towards this
end, we propose a novel recommendation framework that captures
sequential transition patterns, collaborative signals and co-action
signals from four specific views.

• The proposed MCLSR performs cross-view contrastive learning
at interest- and feature-level. The former learns self-supervised
signals from collaborative information and sequential transition
patterns, and the latter captures the co-action information to learn
informative user/item embeddings.

• We conduct extensive experiments on four real-world datasets,
and the results demonstrate the superiority of MCLSR and the
effectiveness of each key component.
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2 RELATED WORK
In this section, we will briefly review several lines of work closely
related to ours, including sequential recommendation and contrastive
learning.

2.1 Sequential Recommendation
Compared with session-based recommendation [38], sequential rec-
ommendation usually considers user ID and their behavior sequence
in a longer time period. Most of the early attempts for SRS are
based on Markov Chain, which infers a user’s next action based on
the previous one. For example, FPMC [28] captures the sequential
patterns by first-order Markov Chain, which is then extend to higher
order Markov Chain [10]. To capture long-term and multi-level cas-
cading dependencies, deep learning techniques are introduced into
SRS. For instance, RNN-based methods [12, 36, 43] regard SRS as a
sequential modeling problem and apply recurrent neural networks to
capture the sequential transition patterns. Further, CNN-based meth-
ods [30, 48] treat each sequence as an image and adopt convolution
networks to model the union-level sequential patterns. Then some ad-
vanced techniques are incorporated into SRS, such as self-attention
attention network [15, 17, 20, 29, 32], memory network [1, 5, 13, 50],
capsule network [2, 16] and graph neural networks [3, 21, 42, 49].
Typically, SASRec [15] stacks multi-head self-attention blocks to
learn dynamic item transition patterns. MIND [16] leverages dy-
namic routing to obtain multiple interests of users. MA-GNN [21]
proposes a memory augmented graph neural network to capture both
items’ short-term contextual information and long-range dependen-
cies for sequential recommendation. However, the above methods
mainly focus on the modeling of sequential transition in a supervised
paradigm, where the supervised signals are entirely based on the
observed user behaviors. Due to the limited observed user behaviors,
the above methods face the problem of data sparsity. In this paper,
we mainly focus on employing a multi-level cross-view contrastive
learning paradigm to alleviate the data sparsity problem.

2.2 Contrastive Learning
The main idea of contrastive learning is to learn informative rep-
resentations by contrasting positive pairs against negative pairs,
which shows impressive achievement in visual representation learn-
ing [4], natural language process [44, 53], and graph neural net-
works [7, 14, 45].

Recently, some studies are proposed to introduce contrastive learn-
ing into recommendation system [22, 24, 25, 39, 40, 46, 47, 51, 54].
For instance, SGL [37] provides an auxiliary signal for existing GCN-
based recommendation models by taking node self-discrimination
as the self-supervised task. SEPT [46] designs a socially aware
self-supervised framework for learning discrimination signals from
the user-item graph and social graph. Some efforts also introduce
contrastive learning into sequential recommendation [6, 26, 52].
S3-Rec [52] devises four auxiliary self-supervised objectives for
data representation learning by using the mutual information maxi-
mization. CL4SRec [41] applies three data augmentation (i.e., crop,
mask and reorder) to generate positive pairs, and contrasts positive
pairs to learn robust sequential transition patterns. DuoRec [26]
proposes a dropout-based model-level augmentation model with a
supervised positive sampling strategy to capture the self-supervised

signal from the sequence. Despite the achievement, the above con-
trastive learning-based methods for SR mainly focus on learning the
self-supervised signals from each sequence. However, due to the lim-
ited information within the sequence, the obtained self-supervised
signal will be too weak to learn informative embedding.

3 PRELIMINARY
In this section, we first formulate the problem of sequential recom-
mendation, then we introduce the construction process of three graph
views and the architecture of the graph encoder layer.

3.1 Problem Formulation
Assume we have a set of users 𝑢 ∈ U and a set of of items 𝑣 ∈ V.
For each user, S(𝑢) = {𝑣 (𝑢)1 , 𝑣

(𝑢)
2 , · · · , 𝑣 (𝑢)|S | } denotes the sequence of

user historical behaviors in chronological order, where 𝑣 (𝑢)
𝑗

denotes

the 𝑗𝑡ℎ item interacted by the user. Given an observed sequence S(𝑢) ,
the typical task of sequential recommendation is to predict the next
items that the user 𝑢 is most likely to be interacted with.

3.2 Graph Construction
An item can be involved in multiple user behavior sequences, from
where we can obtain useful collaborative information [33] and co-
action information [9]. Thus extra graph views are constructed here
to explore the collaborative signals and co-action signals for SRS.
Based on the users’ historical behavior sequences, we first obtain an
user-item interaction matrix M𝒖𝒗 ∈ R |U |× |V | , where M𝒖𝒗

𝒊𝒋 > 0
denotes that item 𝑗 is appeared in user 𝑖’s behavior sequence S𝑖 (i.e.,
𝑣 𝑗 ∈ S𝑖 ) and 0, otherwise.

User-item graph. The user-item graph is a typical bipartite graph,
which is constructed by aggregating cross-user behavior sequences.
Let G𝑢𝑣 = (V𝑢𝑣, E𝑢𝑣) be the user-item graph, where V𝑢𝑣 denotes
the node set of graph G𝑢𝑣 that contains all users in U and all items
in V, and E𝑢𝑣 = {𝑒𝑢𝑣

𝑖 𝑗
= M𝒖𝒗

𝒊𝒋 |M𝒖𝒗
𝒊𝒋 > 0} indicates the edge set of

graph G𝑢𝑣 that contains user-item interactions, where the weight of
edge 𝑒𝑢𝑣

𝑖 𝑗
represents the number of user 𝑖 interacts with item 𝑗 .

User-user/item-item graph. The user-user (item-item) graph is con-
structed to explore the co-action signals between users (items). Based
on the interaction matrix M𝒖𝒗 , we can obtain a user-user matrix1

M𝒖𝒖 = (M𝒖𝒗) (M𝒖𝒗)𝑇 . Let G𝑢𝑢 = (V𝑢𝑢 , E𝑢𝑢 ) be the user-user
graph, where V𝑢𝑢 denotes the graph node set that contains all users
in U, and E𝑢𝑢 = {𝑒𝑢𝑢

𝑖 𝑗
= M𝒖𝒖

𝒊𝒋 |M𝒖𝒖
𝒊𝒋 > 0} indicates graph edge set

that contains co-action information, where the weight of each edge
denotes the number of co-action behaviors between user 𝑖 and user
𝑗 .

3.3 Graph Encoder Layer
To fully exploit the collaborative information and co-action informa-
tion from the graphs, a specific graph encoder layer is employed here
to extract the node features. Due to the effectiveness and lightweight
architecture of LightGCN [11], we employ its message propagation

1Here we present how to construct the user-user graph G𝑢𝑢 , and the item-item graph
G𝑣𝑣 can be constructed similarly.
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strategy to encode the node features:

X(𝑙) = GraphEncoder(X,A) = D− 1
2AD− 1

2X(𝑙−1) , (1)

where A indicates the adjacency matrix of the graph and D𝑖𝑖 =∑
𝑗=0 A𝑖 𝑗 denotes the corresponding diagonal degree matrix. (𝑙)

indicates the depth of graph encoder layers, X(0) indicates the input
node features and X(𝑙) is the output of the graph encoder layer.

4 METHOD
The overview of the proposed multi-level contrastive framework
is presented in Figure 2. which comprises four main components:
1) Graph construction layer. It constructs user-item, user-user and
item-item graphs via aggregating the user behavior sequences; 2)
Interest-level contrastive learning layer. It first learns the current
interest of the user from user behavior sequences and the general
interest of the user from the user-item graph, then a cross-view
contrastive mechanism is performed. 3) Feature-level contrastive
learning layer. It obtains the user and item features from the user-
item, user-user and item-item graphs, and then it performs cross-
view contrastive learning; 4) Joint training. It jointly optimizes the
prediction loss, interest- and feature-level contrastive loss to update
the model parameters. In the following sections, we will present the
technical details of MCLSR.

Here, we first construct a user embedding matrix H𝑢 ∈ R |U |×𝑑

and an item embedding matrix H𝑣 ∈ R |V |×𝑑 , where 𝑑 is the dimen-
sion of the embedding. The input of our model is the user behavior se-
quence S(𝑢) = {𝑣 (𝑢)1 , 𝑣

(𝑢)
2 , · · · , 𝑣 (𝑢)|S | }, which is fed into a specific em-

bedding layer and transformed to the user embedding h𝑢 ∈ R𝑑 and
the corresponding item embedding matrix E𝑢 = [h𝑣1, h

𝑣
2, · · · , h

𝑣
𝑛].

4.1 Interest-level Contrastive Learning
Different from previous SR studies [5] that mainly focus on the
transition patterns on the current sequence, we aim to introduce
collaborative information into SR to capture the general preferences
of users. Then by applying contrastive mechanism, the extra self-
supervised signals from the complementary information between
sequential transition patterns and collaborative information is learned
to alleviate the data sparsity problem.

Current interest learning. This subsection aims to capture the
users’ preferences from the user behavior sequences (i.e., sequential
view). Since different items have distinct importance for current pre-
diction, a self-attention mechanism [18] is applied to model the user
behavior sequences. Given the item embedding matrix E𝑢 , we first
use a trainable position matrix to incorporate the sequential order
information into sequence, i.e., E𝑢,𝑝 = [h𝑣1+p1, h

𝑣
2+p2, · · · , h

𝑣
𝑛+p𝑛].

Then an attention matrix A𝑠 is computed as follows:

A𝑠 = softmax
(
W2tanh(W1 (E𝑢,𝑝 )𝑇 )

)
, (2)

where W1 ∈ R4𝑑×𝑑 and W2 ∈ R4𝑑 are trainable parameters. The
dimension of the output matrix A𝑠 is R𝑛 , where each element A𝑠

𝑗

denotes the affinity between the user preference and 𝑗𝑡ℎ item in
the user behavior sequence. Finally, the user preferences from the
sequential view (named current interest) can be obtained by:

I𝑠𝑢 = A𝑠E𝑢 . (3)

General interest learning. To fully explore the collaborative in-
formation, here we frame the user interests from the cross-user
interaction information in the user-item graph G𝑢𝑣 . To obtain the
user features and item features, a graph encoder layer is employed
as follows2:

H𝑎𝑙𝑙,𝑢𝑣 = GraphEncoder(𝑙) (H𝑎𝑙𝑙 ,G𝑢𝑣), (4)

where H𝑎𝑙𝑙 ∈ R( |U |+ |V |)×𝑑 is the initial node feature matrix that
contains user and item features (i.e., H𝑎𝑙𝑙 = [H𝑢 | |H𝑣], where | |
denotes concatenation operation), and GraphEncoder indicates the
graph encoder layer that defined in Equation (1). H𝑎𝑙𝑙,𝑢𝑣 ∈ R( |U |+ |V |)×𝑑

is the learned node feature matrix from user-item graph.
Then for a given user 𝑢 and corresponding behavior sequence S𝑢 ,

we can obtain the corresponding user embedding h𝑢,𝑢𝑣 ∈ R𝑑 and
item embedding matrix E𝑢,𝑢𝑣 ∈ R𝑛×𝑑 by index selection from the
learned node feature matrix H𝑎𝑙𝑙,𝑢𝑣 ∈ R( |U |+ |V |)×𝑑 according to
the indices of user and items. To estimate the importance of each
item based on the user preference, an attention matrix is computed
based on the user features and item features::

A𝑐 = softmax
(
tanh

(
W3h𝑢,𝑢𝑣

) (
E𝑢,𝑢𝑣

)𝑇 )
, (5)

where W3 ∈ R𝑑×𝑑 is a trainable transform weight, A𝑐 ∈ R𝑛 is the
attention matrix between user preference and items. Then the user
preferences from the user-item view (named general interest) can be
obtained as follows:

I𝑐𝑢 = A𝑐E𝑢,𝑢𝑣 . (6)

Cross-view contrastive learning. To learn the complementary in-
formation from sequential transition patterns and collaborative infor-
mation, it is meaningful to perform the contrastive learning on the
the sequential view (current preference I𝑠𝑢 ) and user-item view (gen-
eral preference I𝑐𝑢 ). Here, we first feed I𝑠𝑢 and I𝑐𝑢 into a multi-layer
perceptron (MLP) to project them into the space where contrastive
loss is calculated:

T𝐼 ,𝑠 =
(
W𝑝

2𝜎 (W
𝑝

1 I
𝑠
𝑢 + b𝑝1 ) + b𝑝2

)
,

T𝐼 ,𝑐 =

(
W𝑝

2𝜎 (W
𝑝

1 I
𝑐
𝑢 + b𝑝1 ) + b𝑝2

)
,

(7)

where W𝑝
∗ ∈ R𝑑×𝑑 , b𝑝∗ ∈ R𝑑 are trainable parameters and 𝜎 denotes

ELU non-linear activation function.
To learn the self-supervised signal from two views, it is essential

to define the positive and negative samples for the interest-level
contrastive mechanism. Inspired by the work of contrastive learning
in graph neural networks [34], we take the interests of the same user
from two views (i.e., sequential view and user-item view) as a pair
of positive samples. Moreover, we naturally treat the interests of
different users as pairs of negative samples. Then the interest-level
contrastive loss can be computed as follows:

L𝐼𝐿 =
∑︁
𝑖=1

−log
Ψ
(
T𝐼 ,𝑠
𝑖
,T𝐼 ,𝑐

𝑖

)
∑
𝑗
Ψ
(
T𝐼 ,𝑠
𝑖
,T𝐼 ,𝑐

𝑗

)
+ ∑

𝑗≠𝑖
Ψ
(
T𝐼 ,𝑠
𝑖
,T𝐼 ,𝑠

𝑗

) , (8)

where Ψ denotes exp (sim(·, ·)/𝜏), sim(·, ·) denotes the cosine simi-
larity function and 𝜏 is a temperature parameter.

2In the equation, we use G∗ to represent the adjacency matrix of the graph for ease of
reading.
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Figure 2: An overview of the proposed framework. ⊕ denotes the element-wise summation.

4.2 Feature-level Contrastive Learning
Directly exploring the user-item graph is insufficient to capture
the co-action information between users (items). In fact, the co-
action information [9] is essential for measuring user-user (item-
item) relationships and learning the user preferences. Thus a user-
user (item-item) graph is constructed to effectively capture the co-
action signals between users (items). For each user3, we learn the
user features from both the user-item view and user-user view, where
the contrastive mechanism is performed to learn self-supervised
signals by capturing the discriminative information from two graph
views and complement each other.

Feature learning. To obtain the collaborative information and co-
action information, we first extract the user features from user-item
view and user-user view, where a graph encoder layer is applied:

[H𝑢,𝑢𝑣 | |H𝑣,𝑢𝑣] = GraphEncoder(𝑙) ( [H𝑢 | |H𝑣],G𝑢𝑣),

H𝑢,𝑢𝑢 = GraphEncoder(𝑙) (H𝑢 ,G𝑢𝑢 ),
(9)

where H𝑢,𝑢𝑣,H𝑢,𝑢𝑢 denotes the user features obtained from user-
item graph G𝑢𝑣 and user-user graph G𝑢𝑢 , respectively. Note that
the weight of edge in G𝑢𝑢 denotes the number of co-action, which
means high co-action pairs show a more critical influence during
graph propagation.

Cross-view contrastive learning. Then the obtained user features
from two graphs are fed into an MLP and projected into the space
where contrastive loss is calculated:

T𝐹,𝑢𝑢 = W𝑝

4𝜎 (W
𝑝

3H
𝑢,𝑢𝑢 + b𝑝3 ) + b𝑝4 ,

T𝐹,𝑢𝑣 = W𝑝

4𝜎 (W
𝑝

3H
𝑢,𝑢𝑣 + b𝑝3 ) + b𝑝4 ,

(10)

where W𝑝
∗ ∈ R𝑑×𝑑 , b𝑝∗ ∈ R𝑑 are trainable parameters.

3Here we show the feature-level contrastive learning for user features, and the process
for item features is similarly.

Considering that each user is involved in two graph views, where
we can capture the user-item collaborative information and user-user
co-action information, respectively. To capture the complementary
information between two graph views and obtain discriminative user
features, we naturally treat the features of the same user obtained in
two graph views as a pair of positive sample while the features of
different users as pairs of negative samples:

L𝑈𝐶 =
∑︁
𝑖=1

−log
Ψ
(
T𝐹,𝑢𝑣
𝑖

,T𝐹,𝑢𝑢
𝑖

)
∑
𝑗
Ψ
(
T𝐹,𝑢𝑣
𝑖

,T𝐹,𝑢𝑢
𝑗

)
+ ∑

𝑗≠𝑖
Ψ
(
T𝐹,𝑢𝑣
𝑖

,T𝐹,𝑢𝑣
𝑗

) , (11)

where L𝑈𝐶 denotes the contrastive loss for user features and the
contrastive loss for item features L𝐼𝐶 can be calculated in a similar
way. The final feature-level contrastive loss L𝐹𝐿 is computed as
follows:

L𝐹𝐿 = L𝑈𝐶 + L𝐼𝐶 . (12)

4.3 Training and Inference
Training phase. After computing the user interest representations
from sequential view and user-item view, we sum them up to obtain
the combined user interest representations:

I𝑐𝑜𝑚𝑏
𝑢 = 𝛼I𝑠𝑢 + (1 − 𝛼)I𝑐𝑢 , (13)

where 𝛼 is a trade-off hyper-parameter. Given a training sample (u, o)
with the user interest embedding I𝑐𝑜𝑚𝑏

𝑢 and target embedding h𝑣𝑜 , the
likelihood of the user 𝑢 interacting with the item 𝑜 can be computed
by sampled softmax method. Furthermore, the objective function for
prediction is to minimize the following negative log-likelihood:

L𝑝 =
∑︁
𝑢∈𝑈

−𝑙𝑜𝑔 exp((I𝑐𝑜𝑚𝑏
𝑢 )𝑇 h𝑣𝑜 )∑

𝑘∈𝑆𝑎𝑚𝑝𝑙𝑒 (V) exp((I𝑐𝑜𝑚𝑏
𝑢 )𝑇 h𝑣

𝑘
)
. (14)
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Table 1: Statistics of the used datasets.

Dataset # user # item # interactions Avg. len. Sparsity
Books 459,133 313,966 8,898,041 9.7 99.993%
Clothing 39,387 23,034 278,677 6.9 99.969%
Toys 75,258 64,444 1,097,592 9.6 99.977%
Gowalla 65,506 174,606 2,061,264 14.5 99.982%

The overall objective is given as follows:

J (𝜃 ) = L𝑝 + 𝛽L𝐼𝐿 + 𝛾L𝐹𝐿, (15)

while 𝛽 and 𝛾 are trade-off hyper-parameters. Noted that, we jointly
optimize the three throughout the training.

Inference phase. For the inference phase, we use the current interest
I𝑠𝑢 to perform downstream tasks because: i) To avoid the problem
of information leakage, we only use the training data to construct
three graphs during training and inference, so the general interest
of users cannot be generated during inference. ii) After optimizing
J (𝜃 ), the collaborative information and co-action information are
learned in the user and item embeddings, thus it is enough to use the
current interest I𝑠𝑢 to perform downstream tasks. Then the candidate
items are clustered based on the inner product:

𝑅(𝑢, 𝑁 ) = Top-N𝑣∈𝑉
(
(I𝑠𝑢 )𝑇 h𝑣

)
, (16)

where 𝑅(𝑢, 𝑁 ) denotes the top-N items to be recommended.

5 EXPERIMENT
5.1 Experimental Settings
Datasets. We conduct experiments on four public datasets.

• Amazon4 consists of product reviews and metadata from
Amazon.com [23], and in this study we choose three repre-
sentative categories: Books, Clothing and Toys.

• Gowalla5 is a widely used check-in dataset which is from a
well-known location-based social networking website.

Following [2], we remove the items that appear less than five
times, and the max length of each training sample is set to 20. The
users of each dataset are split into training, validation, and test sets
by the proportion of 8:1:1. The model is trained on the entire click
sequences of training users. During the training phase, we incorpo-
rate a commonly used set of training sequential recommendation
models. In detail, we view each item in the user interaction sequence
as a potential target item, where the behaviors happen before the
target item is used to generate the users’ interest representation. Dur-
ing the inference phase, we choose to generate the users’ interest
representation from the first 80% of user behaviors and compute the
evaluation metric by predicting the remaining 20% of user behaviors
by following [2]. The statistics of datasets, after preprocessing, are
shown in Table 1.

Baselines. To fully evaluate the performance of our method for SR,
we compare our method with classic methods as well as state-of-the-
art methods.

4http://jmcauley.ucsd.edu/data/amazon/
5https://snap.stanford.edu/data/loc-gowalla.html

• Pop directly recommends top-𝑁 popular items in the training data
during inference.

• GRU4Rec [12] is the first work that applies recurrent neural net-
work for SR.

• SASRec [15] stacks several multi-head self-attention blocks to
capture the sequential transition patterns.

• ComiRec-SA [2] proposes a multi-interest framework for SR by
employing a multi-head self-attention network, where different
heads correspond to different interests of users.

• GCSAN [42] combines the graph neural network and self-attention
mechanism to learn both short- and long-term dependencies be-
tween items.

• S3-RecMIP [52] utilizing the mutual information maximization
(MIM) principle to extract the self-supervised signals from the
item transitions.

• CL4SRec [41] utilizes contrastive mechanism with data augmen-
tation to learn discriminative information.

• DuoRec [26] proposes a model-level augmentation method with
a positive sampling strategy to capture the self-supervised signal
from the user behavior sequences.

Evaluation metrics. Following previous work [2, 41], we adopt
three widely used ranking-based metrics for sequential recommen-
dation: Recall@N, NDCG@N, and Hit@N. Recall@N denotes the
proportion of ground truth items included in the top-N recommended
list, NDCG@N measures the positions of recommended items and
evaluates the ranking quality of the recommended list, and Hit@N
denotes the percentage that the top-N recommended list contains at
least one ground truth item.

Implementation details. For a fair comparison, all methods are
optimized with Adam optimizer with a learning rate of 0.001. The
embedding size is set to 64, and the mini-batch size is set to 128. The
number of negative samples for sampled softmax loss is set to 1280.
For baselines with Transformer blocks (e.g., SASRec, CL4SRec, and
DuoRec), we select the number of Transformer blocks in {1, 2, 3}
and select the dropout ratio in {0.1, 0.2, ..., 0.9} in the validation set.
For other parameters of baseline methods, we follow the settings
given by the original papers if they had provided and otherwise we
perform a grid search in the validation set. For our method, the depth
of GNN layer is set to 2 selected from {0, 1, 2, 3} in the validation set,
and the temperature 𝜏 is set to 0.5. The trade-off parameters {𝛼, 𝛽,𝛾}
are set to {0.5, 1, 0.05} for all datasets. To decrease the noise and
reduce the computational complexity, the neighborhood number
of each node on the user-user and item-item graph is set to 50 by
filtering edges with small weights.

5.2 Performance Comparsion
The experimental results of our method with state-of-the-art base-
lines are listed in Table 2, from where we have the following key
findings:

• The performance of POP is the worst since it directly uses rudi-
mentary statistical methods to recommend the most frequently
occurring items in the training data, which fails to learn the pref-
erence of users. GRU4Rec outperforms POP on four datasets,

Amazon.com
http://jmcauley.ucsd.edu/data/amazon/
https://snap.stanford.edu/data/loc-gowalla.html
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Table 2: Effectiveness comparison between MCLSR and state-of-the-art approaches. † denotes the performance improvement over
the best baseline is statistically significant with p-value < 0.01.

Datasets Metric POPRec GRU4Rec SASRec ComiRec-SA GCSAN S3-RecMIP CL4SRec DuoRec MCLSR Improv.

Books

Recall@20 1.368 3.787 6.274 5.489 5.721 6.336 6.544 6.838 7.469† 9.2%
NDCG@20 0.597 1.923 2.825 2.262 2.706 2.964 3.161 3.257 3.479† 6.8%
Hit@20 3.013 8.710 12.765 11.402 11.730 13.052 13.520 14.173 15.542† 9.6%
Recall@50 2.400 6.335 9.349 8.467 8.455 9.684 10.240 10.826 11.583† 6.9%
NDCG@50 0.826 2.600 3.627 3.082 3.434 3.894 4.113 4.308 4.647† 7.9%
Hit@50 5.219 13.597 18.547 17.202 16.865 19.142 20.170 21.366 23.042† 7.8%

Clothing

Recall@20 1.200 1.623 2.646 1.678 2.242 2.704 2.863 2.940 3.138† 6.7%
NDCG@20 0.374 0.559 0.854 0.427 0.659 0.873 0.927 1.018 1.081† 6.2%
Hit@20 2.139 2.777 4.188 3.467 3.684 4.343 4.467 4.829 5.138† 6.4%
Recall@50 2.715 2.948 4.505 2.774 3.309 4.522 4.651 4.956 5.352† 7.9%
NDCG@50 0.640 0.778 1.151 0.723 0.829 1.116 1.199 1.356 1.464† 8.0%
Hit@50 4.833 5.085 6.705 5.052 5.812 6.723 7.155 7.785 8.503† 9.2%

Toys

Recall@20 0.928 3.214 6.343 5.315 6.593 6.670 6.983 7.841 8.254† 10.3%
NDCG@20 0.510 1.641 2.912 2.114 2.817 3.073 3.072 3.418 3.726† 9.0%
Hit@20 2.496 6.926 12.838 11.075 13.153 13.474 14.079 15.331 16.661† 8.7%
Recall@50 1.844 5.406 10.264 8.962 10.018 10.730 11.300 12.463 13.328† 6.9%
NDCG@50 0.774 2.216 3.899 2.952 3.690 4.072 4.095 4.612 5.081† 10.2%
Hit@50 4.760 11.554 19.837 17.282 19.400 20.363 21.330 23.389 25.462† 8.9 %

Gowalla

Recall@20 1.206 5.642 8.581 5.559 7.869 7.823 8.804 8.973 9.317† 3.8%
NDCG@20 1.191 5.536 7.546 3.891 6.819 7.351 7.601 7.618 7.759† 1.9%
Hit@20 5.874 22.450 28.931 19.052 26.315 27.676 29.853 30.075 31.832† 5.8%
Recall@50 2.084 9.623 13.838 9.891 12.793 12.710 14.372 15.195 15.972† 5.1%
NDCG@50 1.678 7.784 10.510 5.725 9.107 9.752 10.630 10.735 11.012† 2.6%
Hit@50 9.716 34.321 42.380 32.041 38.613 39.463 43.659 44.618 46.217† 3.5%

demonstrating the effectiveness of neural networks for SR. How-
ever, GRU4Rec performs poorly compared to other neural network-
based methods. It shows that directly using the representation of
the last step of RNN is not enough for SR, which is due to the
forgetting problem of RNN. As such, dependencies between items
cannot be effectively extracted.

• We can observe that SASRec and ComiRec-SA surpass GRU4Rec
on four datasets, which demonstrates the strength of the multi-
head self-attention mechanism for SR. It may benefit from two
aspects: First, the attention mechanism can capture the long-term
dependencies within the sequence. Second, it will assign more
significant weight to more important items, which filters the noise
in the sequence.

• By comparing GCSAN and ComiRec-SA, we can observe the
benefits brought by graph neural networks. It is because graph
neural networks can capture more complex item transitions by
converting transitions within sequences to graphs, resulting in
better performance.

• S3-RecMIP and CL4SRec exhibit relatively good performance
among baseline methods, indicating the significance of contrastive
learning for SR. It is because the contrastive mechanism can
learn the extra self-supervised signal for SR, which alleviates the
data sparsity problem. However, both two methods perform data-
level augmentation on each sequence. Due to the less information
diversity between the contrastive pairs, the self-supervised signal
will be too weak to learn informative embedding.

• DuoRec surpasses S3-RecMIP and CL4SRec in most cases. The
reason is that DuoRec applies model-level augmentation (i.e.,

dropout) to the sequence and performs contrastive learning with
a positive sampling strategy, which enhances the diversity of in-
formation for contrastive learning. However, the information in
each sequence is limited, which means it can obtain limited self-
supervised signals without exploring the rich collaborative infor-
mation and co-action information.

• MCLSR significantly outperforms all baselines overall four datasets
consistently. Specifically, the average improvement of MCLSR
over the best baseline is 7.0% on four datasets, demonstrating its
effectiveness for SR. Different from previous contrastive learning-
based methods, the proposed MCLSR leverages a multi-level
contrastive mechanism and extracts the complex collaborative
information and co-action information for SR, which learns dis-
criminative user and item embeddings.

5.3 Ablation Study
As the proposed MCLSR outperforms all kinds of baselines consis-
tently, we investigate the effectiveness of critical components to ana-
lyze the proposed method deeply and comprehensively. Specifically,
we conduct ablation studies by comparing four variants with the
complete model on four datasets. (1)“MCLSR-G” represents remov-
ing the graph encoder layer and directly using the initial embedding
of user and item. (2) “MCLSR-IF” means removing two levels of
contrastive mechanism and only optimizing the loss function for
target prediction. (3) “MCLSR-F” directly removes the feature-level
contrastive mechanism. (4) “MCLSR-I” represents removing the
interest-level contrastive mechanism. From the results in Figure 3,
we can make the following observations:
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Figure 3: Ablation study on four datasets.

Table 3: The performance of MCLSR with varied depth of GNN layers in terms of Metrics@50.

Depth
Books Clothing Toys Gowalla

Recall NDCG Hit Rate Recall NDCG Hit Rate Recall NDCG Hit Rate Recall NDCG Hit Rate
𝑙 = 0 9.881 3.799 20.032 13.025 8.805 40.141 11.052 3.847 21.673 13.265 8.728 40.273
𝑙 = 1 10.853 4.166 21.782 15.897 10.889 44.543 13.165 4.744 25.069 15.769 10.743 45.620
𝑙 = 2 11.583 4.647 23.042 15.972 11.012 46.217 13.328 5.081 25.462 15.972 11.012 46.217
𝑙 = 3 10.085 3.936 20.547 15.021 10.042 43.775 13.720 5.187 26.417 14.948 10.094 43.665
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Figure 4: Impact of trade-off parameter.

• There is a significant drop when removing the graph encoder
layer (i.e., MCLSR-G). It verifies the significance of the collabo-
rative information hidden in the user-item graph and the co-action

information hidden in the user-user/item-item graph. Besides, it
also demonstrates the effectiveness of the graph encoder layer.

• The performance of MCLSR would be remarkably decreased
when removing two levels of contrastive mechanism (i.e., MCLSR-
IF), indicating the crucial role of two levels of contrastive mecha-
nism in learning the extra self-supervised signals and alleviating
the data sparsity problem.

• Compared with MCLSR, MCLSR-I obtains dramatically worse
results on four datasets. It is because MCLSR-I losses the self-
supervised signal obtained by contrasting the user-item view
and sequential view. The results demonstrate the importance of
interest-level contrastive mechanisms to learn significant self-
supervised signals.

• MCLSR-F is inferior to the complete model MCLSR, especially
on Clothing datasets, indicating the importance of co-action infor-
mation in learning the informative embeddings of users and items
from user-user and item-item graphs.

5.4 Parameter Sensitive
Here, we investigate the impact of important hyper-parameter set-
tings on the performance of MCLSR, including trade-off parameters
𝛼 , 𝛽, 𝛾 , and the number of propagation layers in GNN. The results
are shown in Figure 4 and Table 3

Impact of the parameter 𝛼 . The trade-off parameter 𝛼 in Equation
13 controls the proportion of general interest and current interest
during train process. It can be seen from Figure 4a that MCLSR
performs worst when 𝛼 is set to 0, which is due to the inconsistency
between the training process and the inference process. Besides, the
performance dramatically degrades when 𝛼 is set to 1, indicating the
importance of general interest. From the results, MCLSR obtains the
best performance when 𝛼 = 0.25 on Books and 𝛼 = 0.75 on Gowalla.

Impact of the parameter 𝛽. The trade-off parameter 𝛽 determines
the influence of the interest-level contrastive mechanism during
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Figure 5: Item embeddings of selected methods on Book dataset.

the training process. From Figure 4b, it can be observed that the
performance of MCLSR shows a significant rise when 𝛽 increases
from 0 to 0.5, which demonstrates the crucial role of the interest-
level contrastive mechanism. Besides, the results of MCLSR become
slightly worse when 𝛽 > 1.5 on Gowalla, which means excessive
attention to collaborative information may hurt performance.

Impact of the parameter 𝛾 . The trade-off parameter 𝛾 controls
the influence of the feature-level contrastive mechanism. From the
results in Figure 4c, MCLSR obtains better performance when 𝛾

increases from 0 to 0.05 on two datasets, which demonstrates the
effectiveness of feature-level contrastive learning. Besides, the per-
formance of the model drops significantly when 𝛾 is set to 1, which
shows that focusing too much on the co-action signals of users and
items will deteriorate the performance of the model.

Impact of the depth of GNN layers. To deeply investigate whether
MCLSR benefits from the graph information, we search the number
of graph encoder layers 𝑙 in the range of {0, 1, 2, 3} and summarize
the results in Table 3. It can be observed that:

• The information on the user-item graph, user-user graph, and
item-item graph is significant for SR. Specifically, MCLSR with
𝑙 = 0 obtains dramatically worse results, and there is a significant
improvement when setting 𝑙 = 1 for MCLSR.

• Increasing the depth of GNN is able to enhance the predictive
results. More specifically, MCLSR with 𝑙 = 2 performs better
than MCLSR with 𝑙 = 1 on four datasets and MCLSR achieves
the best performance on Toys when 𝑙 = 3, which indicates that
higher order of propagation obtains more effective collaborative
information from three graph views.

• Higher layer of GNN may deteriorate the performance of MCLSR.
Specifically, MCLSR with 𝑙 = 3 performs worse than MCLSR
with 𝑙 = 2 in most cases, which may be due to the overfitting
problem of GNNs [33].

5.5 Qualitative Analysis
Except for performance scores, we also provide qualitative results
to demonstrate the superiority of MCLSR further. Specifically, we
project the learned item embedding into two-dimensional space by
SVD [26] and show the learned space of selected methods on the
Book dataset in Figure 5.

Form Figure 5a we can observe that the item embedding learned
by SASRec degenerated into a narrow cone. According to [8, 31]

such phenomena deteriorate the model’s capacity as the learned em-
bedding does not have enough capacity to model the diverse features.
Comparing Figure 5b, 5c and 5a, the learned embedding spaces
of CL4SRec and DuoRec are better than SASRec. It is because
CL4SRec and DuoRec devise auxiliary self-supervised objectives
for data representation learning based on data-level augmentation
and model-level augmentation, respectively. However, directly ex-
ploiting the self-supervised signals from the sequence is insufficient
for SR. In contrast, Figure 5d and 5e show that the learned embed-
dings of MCLSR without and with CL. It can be observed that the
learned embeddings of MCLSR (Figure 5e) are somewhat uniformly
distributed around the origin and not strictly in a narrow cone, which
effectively expands the embedding space and has more capacity to
model the diverse features of items. We argue that this is because
MCLSR learns the representations of users and items through a cross-
view contrastive learning paradigm on two levels. Specifically, the
interest-level contrastive mechanism jointly learns the collaborative
information and the sequential transition patterns, and the feature-
level contrastive mechanism captures the co-action signals when
learning the user and item features. In this way, MCLSR obtains
discriminative item and user representations without extra labels.

6 CONCLUSION
This study presents a multi-level contrastive learning framework for
sequential recommendation. Different from previous methods, we
design four informative views (i.e., sequential view, user-item view,
user-user view, and item-item view) and learn the self-supervised
signals via cross-view contrastive learning at two different levels.
The interest-level contrastive mechanism learns the complementary
information from collaborative information and sequential transi-
tion patterns and the feature-level contrastive mechanism mines
the co-action information between users and items. Comprehensive
experiments demonstrate that the proposed method significantly out-
performs baselines over four datasets, indicating it has excellent
potential to solve real-world recommendation problems.
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